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In engineering work, the handling of boundary conditions is not as perfect as required
due to the present immaturity of engineering techniques. Hence the actual buckling load
of an element is sometimes not consistent with that predicted in the design. For design
considerations, the establishment of a method of analysis for determining the buckling load
experimentally is necessary. The proposed approach is suitable for all kinds of boundaries,
and an axial force is not required in the testing process. In practice, the dynamic parameters
determined experimentally are utilized to calculate the buckling load.
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1. INTRODUCTION

Buckling is a phenomenon in which a structural system can be given small displacements
without application of a disturbing force [1]. Although this kind of phenomenon itself may
not cause any damage in structural material, the consequence that hence a large
displacement can result from a disturbing force may result in destruction of the structural
system. Buckling is not merely caused by stress, but also by other factors such as the
dimensions of the element, boundary conditions, material properties, etc. These factors
may be controlled in engineering work, but nevertheless the handling of boundary
condition is not as ideal as needed mostly because the actual buckling load deviated from
that predicted in the design. Thus, it is necessary to establish an experimental method of
determining the buckling load. Research efforts [2–8] in this field of study may be classified
into two categories: the static approach and the dynamic approach. For the static
approach, the implementation of a simulated load acting on the piece may not be easy
in most cases. For the dynamic approach, the characteristic dynamic parameters related
to the buckling load are the major considerations. Though several results have been
obtained for particular cases, the analysis model still has to be improved for use in general
cases. Herein, a method which is adaptable for all kinds of boundary conditions is
proposed.

2. ANALYSIS MODEL

A structural member of length L with arbitrary end constraints is subjected to a
compressive axial force, P, shown in Figure 1. For a small deformation, the x-axis
configuration of the structural member is assumed to remain unchanged, but it experiences

0022–460X/97/330257+08 $25.00/0/sv951047 7 1997 Academic Press Limited



P P x

∆

L

w (x)

z

. .   .258

Figure 1. End displacement of a bent beam

a z-axis translation of w(x). The total shortening distance D due to bending caused by the
compressive axial load is [9]
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The work done by the applied compressive axial force P is

U=P · D=
P
2 g

L

0 0dw(x)
dx 1

2

dx. (2)

For convenience, the buckling shape of the structural member may be expressed by use
of Lagrange’s interpolation function w(x) [10],

w(x)= s
n

k=1

Nk (x)Dk , (3)

where

Nk (x)=
(x− x1)(x− x2) · · · (x− xk−1)(x− xk+1)(x− xk+2) · · · (x− xn )

(xk − x1)(xk − x2) · · · (xk − xk−1)(xk − xk+1)(xk − xk+2) · · · (xk − xn )
. (4)

Dk denotes the deflection at the interpolation point xk . Substituting equation (3) into
equation (2) yields
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P
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L

0 0 s
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2

dx. (5)

The equivalent force Fi , corresponding to the deflection in the ith node may be obtained
by using Castigliano’s First Theorem [1] as

Fi = 1U/1Di = s
n

k=1 $Pg
L

0
0dNi

dx
dNk

dx 1 dx%Dk . (6)

Equation (6) may be represented in matrix form as

{F}=P[B]{D}, (7)

where

[B]=Bij =g
L

0 0dNi

dx
dNj

dx 1 dx. (8)
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Also, the equivalent force Fi , may be related to the deflection Di [1] by

{D}=[G]{F}, (9)

where [G] is called the flexibility matrix and its elements Gij are called flexibility
influence coefficients. Gij is defined as the displacement at node j due to a unit load applied
at node i.

Substituting equation (7) into equation (9) yields

{D}=P[G][B]{D}, l{D}=[G][B]{D},

where l=l/p.
For a non-trivial solution one must have

= [G][B]− l[I] ==0. (10)

The solution for the maximum eigenvalue lmax , is related to the buckling load Pcr by

Pcr = l/lmax . (11)

3. ESTABLISHMENT OF THE FLEXIBILITY MATRIX

The differential equation of free vibration for a structural member may be stated as

(d2/dx2)(EI d2w(x, t)/dx2)+m d2w(x, t)/dt2 =0. (12)

Assuming that the solution of equation (12) is separable into time and space factors, one
may write

w(x, t)= s
a

k=1

fk (x)Tk (t). (13)

Substituting equation (13) into equation (12) leads to two ordinary differential equations,

(d2/dx2)(EI d2fk (x)/dx2)−mv2
kfk (x)=0, d2Tk (t)/dt2 +v2

kTk (t)=0, (14, 15)

where vk and fk (x) are the natural frequency and the corresponding modal shape of the
kth mode respectively.

The modal shape, fk (x) must satisfy the orthogonality condition

g
L

0

mfi (x)fj (x) dx= dij , (16)

where dij is the Kronecker delta.

Figure 2. Dirac Delta function for loading and induced beam deflection
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Figure 3. Prismatic beams for analysis on solution consideration

The equivalent equation of the above mentioned system which is subjected to a
static unit load F= d(x− h), at the position x= h as shown in Figure 2, may be
expressed as

(d2/dx2)(EId2w(x)/dx2)= d(x− h). (17)

By Galerkin’s method, w(x) may be approximated by a linear combination of function
(f1, f2, f3, · · ·) as

w(x)= s
a

k=1

akfk (x), (18)

where ak are constants to be determined. Therefore,

s
a

k=1

ak g
L

0

d2

dx2 0EI
d2fk (x)

dx2 1 fi (x) dx=g
L

0

d(x− h)fi (x) dx. (19)

By comparing equation (14) with equation (17), the unknown constants ak may be
simplified by the use of equation (16) as

ai =fi (h)/v2
i . (20)

The deflection curve w(x) may thus be obtained by substituting equation (20) into equation
(18), to yield

w(x)= s
a

k=1

fk (h)fk (x)
v2

k
. (21)

Figure 4. Uniform distributions of five stations for the analysis of buckling load.
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T 1

The buckling loads determined by means of uniform distribution of stations

Five stations
End Exact solutions ZXXXXXXCXXXXXXV
constraints Per(EI/L2) Pcr(EI/L2) Errors (%)

C–F 2·4674 2·4694 0·08
S–T 2·4674 2·4595 −0·32
S–S 9·8696 9·8473 −0·22
C–T 9·8696 9·9640 −1·05
C–S 20·19 19·6541 −2·65
C–C 39·478 30·8129 −21·95

For h= xj , the flexibility influence coefficient Gij in equation (9) then be determined as

Gij =w(xi )= s
a

k=1

fk (xi )fk (xj )
v2

k
. (22)

4. SOLUTION CONSIDERATIONS

The interpolation function of equation (3) is used to describe the buckling shape, which
plays a dominating role in the accuracy. With proper selection of interpolation points (i.e.,
stations in the experimentation) one may obtain a well-defined shape which leads to
satisfactory solutions. Examples with extreme end constraints (i.e., free end and clamped
end constraints) are chosen to illustrate the feasibility of the method.

4.1.  1
The feasibility of the proposed approach is investigated by the analysis of

prismatic beam with various end constraints, as shown in Figure 3, where S, C, F
and T represent the simply supported, clamped, free and translation without rotation at
the ends, respectively. Modal parameters used in constructing the simulated free-response
functions were obtained from analytical solutions. The first five modes of vibration
were considered. In this example, two different arrangements for distribution of
the stations (i.e., equal and unequal distances between the stations) are considered. The
exact solutions for the free vibration of the prismatic beam with various end conditions
are also utilized to establish the flexibility matrix which is required for determining
buckling load.

Figure 5. Non-uniform distributions of seven stations for the analysis of buckling load.
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T 2

The buckling load determined by means of non-uniform distribution of
stations

Seven stations
End Exact solutions ZXXXXXXCXXXXXXV
constraints Pcr(EI/L2) Per(EI/L2) Errors (%)

C–F 2·4674 2·4599 −0·30
S–T 2·4674 2·4599 −0·30
S–S 9·8696 9·8434 −0·26
C–T 9·8696 9·8677 −0·01
C–S 20·19 20·0642 −0·62
C–C 39·478 39·2529 −0·57

4.1.1. Uniform distribution of stations
Five stations were selected to analyze the buckling load of the prismatic beam with

various end conditions, as shown in Figure 4. The results are listed in Table 1. These results
reveal that the prismatic beam with end conditions such as C–F, S–T, S–S and C–T are
in very good agreement with the exact solutions, but not for cases C–S and C–C.

The main reason for this disagreement may be that the buckling shape function chosen
does not represent properly the deflection of the structural member for the cases C–S and
C–C. Actually, the buckling load is significantly affected by the effective length: that is,
the distance between inflection points of the structure. For these two cases, inflection points
do occur near the rigid end constraints. Therefore, in order to express the buckling
deflection of the structural member thoroughly, one has to modify the distribution of the
measuring stations. Herein, a non-uniform distribution of stations approach is proposed
to improve the precision of the identified results.

4.1.2. Non-uniform distribution of stations
For the non-uniform distribution of stations method, only seven stations were selected

for analyzing the buckling load, in which five of the stations were located at the same
positions as before, and the remaining two stations were placed in the interval between
the points (x=1/4 L, 3/4 L) and the end points (x=0, L), as shown in Figure 5. The
identified results are listed in Table 2. The identified results are sufficiently good in
comparison with the exact solution for all cases.

4.2.  2
The second example is for end conditions of line spring and rotation spring support,

as shown in Figure 6. The flexibility matrix of this example is determined by dynamic
parameters derived from a finite element method. The spring constants are a1 =15 EI/L3,
a2 =50 EI/L3 and b=100 EI/L2, respectively. In this example, five equi-distance
measuring stations and seven non-equi-distant measuring stations were chosen for

Figure 6. Beam with spring supports as example for buckling load determination.
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T 3

Results for spring end constraints compared with these derived from the finite element method

Uniform distribution of Non-uniform distribution

Finite element
stations (5 stations) of stations (7 stations)

ZXXXXCXXXXV ZXXXXCXXXXV
End constraints Pcr(EI/L2) Pcr(EI/L2) Errors (%) Per(EI/L2) Errors (%)

Case 1 7·500 7·492 −0·11 7·492 −0·11
Case 2 29·228 27·590 −5·60 28·623 −2·06

determining the buckling load. The results, together with those from the finite element
method, are listed in Table 3. From this table, it is not difficult to discover that the analysis
model in which seven non-equi-distant measuring points was used determine the buckling
load relatively correctly for arbitrary end constraints.

These two examples indicate that the distribution of the measuring points on the
structural member plays a significant role in determining the buckling load. Using seven
non-equi-distant measuring stations is a commendable means for determination of the
buckling load.

5. FEASIBILITY OF EXPERIMENTAL IDENTIFICATION

In practice, the accuracy of the experimental determination of the buckling load is
always affected by factors such as experimental apparatus error, man-made error, etc. To
assess the possible error for the buckling load determination, a simulation experimentation
was designed and carried out, as follows: (1) calculation of theoretical vibration parameters
[f�] and v̄n ; (2) generation of experimental errors e within an error range by using the
Monte-Carlo method [12]; (3) simulation of experimental vibration parameters [f] and vn

by the formulas fi =f� i ×(1+ ei ) and vn = v̄n ×(1+ en ); (4) determination of [G] by
using equation (22); (5) determination of [B] by using equation (8); (6) identification of
Pcr by using equation (11).

In the analysis, three different cases, with error ranges, 2%, 4% and 6% were taken into
consideration. With 10 000 simulation experimentations in each case, the maximum error
of Pcr for different boundary conditions are shown in Table 4. It may be inferred that the
accuracy of the buckling load identification is proportional to the measurement errors.
Since the technique of model testing is well-established, an identification error within 3%
can easily be reached. This means, from Table 4, that the proposed approach can provide
an effective way to determine the buckling load.

T 4

Maximum % errors of simulation experimentations for various end
conditions

Experimental
error range (%) S–S C–F S–C C–C

2 5 8 5 8
4 10 14 10 14
6 15 20 15 20
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6. CONCLUSION

An analysis model for determining the buckling load of a structural member by utilizing
dynamic parameters determined experimentally is proposed in this paper. It is concluded
that the proposed analysis model is a valid method for determining the buckling load. The
main advantages of applying the proposed analysis model may be stated as follows: (1)
it requires only the dynamic parameters, i.e., natural frequencies and the corresponding
mode shapes, for buckling load determination, (2) it is suitable for all kinds of end
constraints: (3) there is no axial force required in the process.
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